Строение вирусов микробиология

Строение вирусов микробиология

1. Морфология и структура вирусов

Вирусы – микроорганизмы, составляющие царство Vira.

1) содержат лишь один тип нуклеиновой кислоты (РНК или ДНК);

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

5) облигатный паразитизм вирусов реализуется на генетическом уровне;

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

2) линейной двухнитевой;

3) линейной фрагментированной;

5) содержащей две одинаковые однонитевые РНК.

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

Данный текст является ознакомительным фрагментом.

Данная книга предназначена студентам медицинских образовательных учреждений. Это краткое пособие поможет при подготовке и сдаче экзамена по микробиологии. Материал изложен в очень удобной и запоминающейся форме и поможет студентам за сжатый срок детально освоить основные концепции и понятия курса, а также конкретизировать и систематизировать знания.

Оглавление

  • ЛЕКЦИЯ № 1. Введение в микробиологию
  • ЛЕКЦИЯ № 2. Морфология и ультраструктура бактерий
  • ЛЕКЦИЯ № 3. Физиология бактерий
  • ЛЕКЦИЯ № 4. Генетика микроорганизмов. Бактериофаги
  • ЛЕКЦИЯ № 5. Общая вирусология
  • ЛЕКЦИЯ № 6. Учение об инфекции
  • ЛЕКЦИЯ № 7. Нормальная микрофлора организма человека

Приведённый ознакомительный фрагмент книги Микробиология: конспект лекций (К. В. Ткаченко) предоставлен нашим книжным партнёром — компанией ЛитРес.

ЛЕКЦИЯ № 5. Общая вирусология

1. Морфология и структура вирусов

Вирусы – микроорганизмы, составляющие царство Vira.

1) содержат лишь один тип нуклеиновой кислоты (РНК или ДНК);

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

5) облигатный паразитизм вирусов реализуется на генетическом уровне;

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

Читайте также:  Варикоза нет уфа братьев кадомцевых

2) линейной двухнитевой;

3) линейной фрагментированной;

5) содержащей две одинаковые однонитевые РНК.

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

2. Взаимодействие вирусов с клеткой хозяина

Взаимодействие идет в единой биологической системе на генетическом уровне.

Существует четыре типа взаимодействия:

1) продуктивная вирусная инфекция (взаимодействие, в результате которого происходит репродукция вируса, а клетки погибают);

2) абортивная вирусная инфекция (взаимодействие, при котором репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);

3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);

4) вирус-индуцированная трансформация (взаимодействие, при котором клетка, инфицированная вирусом, приобретает новые, ранее не присущие ей свойства).

После адсорбции вирионы проникают внутрь путем эндоцитоза (виропексиса) или в результате слияния вирусной и клеточной мембран. Образующиеся вакуоли, содержащие целые вирионы или их внутренние компоненты, попадают в лизосомы, в которых осуществляется депротеинизация, т. е. «раздевание» вируса, в результате чего вирусные белки разрушаются. Освобожденные от белков нуклеиновые кислоты вирусов проникают по клеточным каналам в ядро клетки или остаются в цитоплазме.

Нуклеиновые кислоты вирусов реализуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию).

После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства. Процесс этот происходит обычно вблизи клеточных мембран, которые иногда принимают в нем непосредственное участие. В составе вновь образованных вирионов часто обнаруживаются вещества, характерные для клетки, в которой размножается вирус. В таких случаях заключительный этап формирования вирионов представляет собой обволакивание их слоем клеточной мембраны.

Последним этапом взаимодействия вирусов с клетками является выход или освобождение из клетки дочерних вирусных частиц. Простые вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают в межклеточное пространство. Другие вирусы, имеющие липопротеидную оболочку, выходят из клетки путем почкования. При этом клетка длительное время сохраняет жизнеспособность. В отдельных случаях вирусы накапливаются в цитоплазме или ядре зараженных клеток, образуя кристаллоподобные скопления – тельца включений.

3. Культивирование вирусов

Основные методы культивирования вирусов:

1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает. Если болезнь не развивается, то патологические изменения можно обнаружить при вскрытии. У животных наблюдаются иммунологические сдвиги. Однако далеко не все вирусы можно культивировать в организме животных;

2) культивирование вирусов в развивающихся куриных эмбрионах. Куриные эмбрионы выращивают в инкубаторе 7—10 дней, а затем используют для культивирования. В этой модели все типы зачатков тканей подвержены заражению. Но не все вирусы могут размножаться и развиваться в куриных эмбрионах.

В результате заражения могут происходить и появляться:

1) гибель эмбриона;

2) дефекты развития: на поверхности оболочек появляются образования – бляшки, представляющие собой скопления погибших клеток, содержащих вирионы;

3) накопление вирусов в аллантоисной жидкости (обнаруживают путем титрования);

4) размножение в культуре ткани (это основной метод культивирования вирусов).

Различают следующие типы культур тканей:

1) перевиваемые – культуры опухолевых клеток; обладают большой митотической активностью;

2) первично трипсинизированные – подвергшиеся первичной обработке трипсином; эта обработка нарушает межклеточные связи, в результате чего выделяются отдельные клетки. Источником являются любые органы и ткани, чаще всего – эмбриональные (обладают высокой митотической активностью).

Читайте также:  Почему когда садишься отдает в низ живота

Для поддержания клеток культуры ткани используют специальные среды. Это жидкие питательные среды сложного состава, содержащие аминокислоты, углеводы, факторы роста, источники белка, антибиотики и индикаторы для оценки развития клеток культуры ткани.

О репродукции вирусов в культуре ткани судят по их цитопатическому действию, которое носит разный характер в зависимости от вида вируса.

Основные проявления цитопатического действия вирусов:

1) размножение вируса может сопровождаться гибелью клеток или морфологическими изменениями в них;

2) некоторые вирусы вызывают слияние клеток и образование многоядерного синцития;

3) клетки могут расти, но делиться, в результате чего образуются гигантские клетки;

4) в клетках появляются включения (ядерные, цитоплазматические, смешанные). Включения могут окрашиваться в розовый цвет (эозинофильные включения) или в голубой (базофильные включения);

5) если в культуре ткани размножаются вирусы, имеющие гемагглютинины, то в процессе размножения клетка приобретает способность адсорбировать эритроциты (гемадсорбция).

4. Особенности противовирусного иммунитета

Противовирусный иммунитет начинается со стадии презентации вирусного антигена Т-хелперами.

Сильными антигенпрезентирующими свойствами при вирусных инфекциях обладают дендритные клетки, а при простом герпесе и ретровирусных инфекциях – клетки Лангерганса.

Иммунитет направлен на нейтрализацию и удаление из организма вируса, его антигенов и зараженных вирусом клеток. Антитела, образующиеся при вирусных инфекциях, действуют непосредственно на вирус или на клетки, инфицированные им. В этой связи выделяют две основные формы участия антител в развитии противовирусного иммунитета:

1) нейтрализацию вируса антителами; это препятствует рецепции вируса клеткой и проникновению его внутрь. Опсонизация вируса с помощью антител способствует его фагоцитозу;

2) иммунный лизис инфицированных вирусом клеток с участием антител. При действии антител на антигены, экспрессированные на поверхности инфицированной клетки, к этому комплексу присоединяется комплемент с последующей его активацией, что и обуславливает индукцию комплементзависимой цитотоксичности и гибель инфицированной вирусом клетки.

Недостаточная концентрация антител может усиливать репродукцию вируса. Иногда антитела могут защищать вирус от действия протеолитических ферментов клетки, что при сохранении жизнеспособности вируса приводит к усилению его репликации.

Вируснейтрализующие антитела действуют непосредственно на вирус лишь в том случае, когда он, разрушив одну клетку, распространяется на другую.

Когда вирусы переходят из клетки в клетку по цитоплазматическим мостикам, не контактируя с циркулирующими антителами, то основную роль в становлении иммунитета играют клеточные механизмы, связанные прежде всего с действием специфических цитотоксических Т-лимфоцитов, Т-эффекторов и макрофагов. Цитотоксические Т-лимфоциты непосредственно контактируют с клеткой-мишенью, повышая ее проницаемость и вызывая осмотическое набухание, разрыв мембраны и выход содержимого в окружающую среду.

Механизм цитотоксического эффекта связан с активацией мембранных ферментных систем в зоне прилипания клеток, образованием цитоплазматических мостиков между клетками и действием лимфотоксина. Специфические Т-киллеры появляются уже через 1–3 дня после заражения организма вирусом, их активность достигает максимума через неделю, а затем медленно понижается.

Одним из факторов противовирусного иммунитета является интерферон. Он образуется в местах размножения вируса и вызывает специфическое торможение транскрипции вирусного генома и подавление трансляции вирусной мРНК, что препятствует накоплению вируса в клетке-мишени.

Стойкость противовирусного иммунитета вариабельна. При ряде инфекций (ветряной оспе, паротите, кори, краснухе) иммунитет достаточно стойкий, а повторные заболевания встречаются крайне редко. Менее стойкий иммунитет развивается при инфекциях дыхательных путей (гриппе) и кишечного тракта.

Вирусы относятся к царству Vira.Это

1.мель­чайшие микробы («фильтрующиеся агенты»),

2.не имеющие клеточного строения, белоксинтезирующей системы,

3.содержащие один тип нуклеиновой кислоты (только ДНК или РНК).

4.Вирусы, являясь облигатными внутриклеточ­ными паразитами, размножаются в цитоплазме или ядре клетки.

5.Они являются автономными генетическими структурами и отличаются осо­бым, разобщенным (дизъюнктивным), спо­собом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кисло­ты вирусов и их белки, затем происходит их сборка в вирусные частицы.

6.Сформированная вирусная частица называется вирионом.

Морфологию и структуру вирусов изучают с помощью электронной микроскопии, так как их размеры малы и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть различ­ной (рис.):

1.палочковидной (вирус табач­ной мозаики),

2.пулевидной (вирус бешенства),

3.сферической (вирусы полиомиелита, ВИЧ),

4.ни­тевидной (филовирусы),

5.в виде сперматозои­да (многие бактериофаги).

Размеры вирусов определяют:

1. с помощью электронной микроскопии,

2. методом улырафильтрации через фильтры с известным диаметром пор,

3. методом ультрацентрифугирования.

Наиболее мелкими вирусами являются парвовирусы (18 нм) и вирус полиомиелита (около 20 нм), наиболее круп­ным — вирус натуральной оспы (около 350 нм).

Читайте также:  Вздулась вена на ладони

Различают ДНК- и РНК-содержащие виру­сы.Они обычно гаплоидны, т. е. имеют один набор генов. Исключением являются ретро-вирусы, имеющие диплоидный геном. Геном вирусов содержит от шести до нескольких со­тен генов и представлен различными видами нуклеиновых кислот:

1.двунитевыми,

2.однонитевыми,

3.линейными,

4.кольцевыми,

5.фрагментированными.

Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов вы­полняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).

Имеются также РНК-содержащие вирусы с отрицательным(минус-нить РНК) гено­мом.Минус-нить РНК этих вирусов выпол­няет только наследственную функцию.

Геном вирусов способен включаться в геном клетки в виде провируса, проявляя себя ге­нетическим паразитом клетки. Нуклеиновые кислоты некоторых вирусов, например, вирусов герпеса, могут находиться в цитоплазме инфи­цированных клеток, напоминая плазмиды.

Различают:

1. просто устроенные вирусы (на­пример, вирусы полиомиелита, гепатита А) и

2. сложно устроенные вирусы (например, виру­сы кори, гриппа, герпеса, коронавирусы).

Упросто устроенных вирусов (рис.) нуклеиновая кислота связана с белковой оболоч­кой, называемой капсидом(от лат. capsa—футляр). Капсид состоит из повторяющихся морфологических субъединиц— капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом и вместе называются нуклеокапсидом.

У сложноустроенных вирусов (рис.) капсид окружен липопротеиновой оболоч­койсуперкапсидом, или пеплосом. Оболочка вируса является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые «шипы», или «шипики» (пепломеры, или суперкапсидные белки). Под оболочкой некоторых вирусов находится М-белок.

Таким образом, просто устроенные вирусы состоят из нуклеиновой кислоты и капсида. Сложно устроенные вирусысостоят из нукле­иновой кислоты, капсида и липопротеино­вой оболочки.

Вирионы имеют:

1.спиральный,

2.икосаэдрический (кубический) или сложный тип симметрии кап­сида (нуклеокапсида).

Спиральный тип сим­метрии обусловлен винтообразной структурой нуклеокапсида (например, у вирусов гриппа, коронавирусов). Икосаэдрический типсимметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеи­новую кислоту (например, у вируса герпеса).

Капсид и оболочка (суперкапсид) защи­щают вирионы от воздействия окружающей среды, обусловливают избирательное взаимо­действие (адсорбцию) с определенными клет­ками, а также антигенные и иммуногенные свойства вирионов.

Внутренние структуры вирусов называют сер­дцевиной. У аденовирусов сердцевина состоит из гистоноподобных белков, связанных с ДНК, уреовирусов — из белков внутреннего капсида.

В вирусологии используют следующие так­сономические категории:

1.семейство (название оканчивается на viridae),

2.подсемейство (на­звание оканчивается на virinae),

3.род (название оканчивается на virus).

Однако названия родов и особенно подсемейств даны не для всех ви­русов. Вид вируса не получил биноминального названия, как у бактерий.

В основу классификации вирусов поло­жены следующие категории:

1. тип нуклеино­вой кислоты (ДНК илиРНК), ее структура, количество нитей (одна или две), особен­ности воспроизводства вирусного генома (табл. 2.3),

2. размер и морфология вирионов, количество капсомеров и тип симметрии нуклеокапсида, наличие оболочки (суперкапсида).

3. чувствительность к эфиру и дезоксихолату,

4. место размножения в клетке,

5. антигенные свойства и др.

Вирусы поражают позвоночных и беспозво­ночных животных, а также бактерии и расте­ния. Являясь основными возбудителями ин­фекционных заболеваний человека, они также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирусы краснухи, цитомегалии и др.), поражая плод человека. Они могут приводить и к постинфекционным осложне­ниям — развитию миокардитов, панкреатитов, иммунодефицитов и др.

Кроме обычных (канонических) вирусов известны инфекционные молекулы, кото­рые не являются вирусами и называются прионами. Прионы—термин, предложенный С. Прузинером, представляет собой анаграм­му английских слов «инфекционная белковая частица.» Клеточная форма нормального прионового протеина (РгРС) имеется в организме млекопитающих, в том числе человека, и выпол­няет ряд регуляторных функций. Его кодирует PrP-ген, расположенный в коротком плече 20-й хромосомы человека. При прионных болезнях в виде трансмиссивных губкообразных энцефа­лопатии (болезнь Крейтцфельда—Якоба, куру и др.) прионный протеин приобретает другую, инфекционную форму, обозначаемую как РгР & (Sc — от scrapie — скрепи, прионной инфекции овец и коз). Этот инфекционный прионовый протеин имеет вид фибрилл и отличается от нор­мального прионного протеина третичной или четвертичной структурой.

Другими необычными агентами, близкими к вирусам, являются вироиды— небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие

Не нашли то, что искали? Воспользуйтесь поиском:

Ссылка на основную публикацию
Adblock detector