Образование тромба взаимодействие тромбина с фибриногеном

Образование тромба взаимодействие тромбина с фибриногеном

Прекращение кровотечения после травматического повреждения кровеносных сосудов называется гемостазом.

Выделяют четыре фазы гемостаза:

· Первая фаза — сокращение поврежденного сосуда. При этом уменьшается кровоснабжение дистальной от травмы области.

· Вторая фаза — образование в месте повреждения рыхлой тромбоцитарной пробки или белого тромба. Имеющийся в участке повреждения коллаген служит связывающим центром для тромбоцитов; у последних в результате связывания разрушается их внутренняя структура и высвобождаются тромбоксан и ADP . Они в свою очередь индуцируют присоединение новых тромбоцитов и таким образом образуется рыхлая временная пробка. Длительность данной фазы гемостаза определяют по продолжительности кровотечения.

· Третья фаза — формирование красного тромба (кровяного сгустка).

· Четвертая фаза — частичное или полное растворение сгустка.

Различают три типа тромбов или сгустков:

· Белый тромб (первый тип) образуется из тромбоцитов и фибрина; в нем относительно мало эритроцитов. Формируется он в местах повреждения или на патологически измененной стенке сосуда в условиях высокой скорости кровотока (в артериях).

· Второй вид тромбов — это диссеминированные отложения фибрина в очень мелких сосудах (капиллярах).

· Третий вид тромбов — красный тромб — состоит из эритроцитов и фибрина. Морфология красного тромба сходна с морфологией сгустков, образующихся в пробирке. Красные тромбы формируются in vivo в областях замедленного кровотока при отсутствии патологических изменений в стенке сосуда, в месте повреждения или на измененной стенке сосуда вслед за инициирующей тромбоцитарной пробкой.

  • Инициация образования тромба в ответ на повреждение ткани осуществляется по внешнему пути свертывания.
  • Инициация формирования красного тромба в области замедленного кровотока или на аномальной сосудистой стенке при отсутствии повреждения ткани происходит по внутреннему пути свертывания.
  • Внешний и внутренний пути свертывания завершаются общим конечным путем. На этом этапе происходит переход протромбина в тромбин и катализируемое тромбином превращение фибриногена в фибрин тромба.

Таблица 1. Система нумерации факторов свертывания крови.

Номера не отражают последовательности действия факторов

Лабильный фактор, проакселерин , Ас-глобулин

Проконвертин , ускоритель превращения сывороточного протромбина, котромбопластин , аутопротромбин I

Антигемофильный фактор, антигемофильный глобулин

Тромбопластиновый компонент плазмы (фактор Кристмаса )

Предшественник тромбопластина плазмы

Превращение фибриногена в фибрин, катализируемое тромбином

Фибриноген (фактор I , см. рис. 1 и табл. 1) — это растворимый гликопротеин плазмы, синтезируемый в печени, длина его молекулы 46 нм, мол масса 340000. Молекула состоит из шести полипептидных цепей (две А α — цепи, две Вβ -цепи и две γ -цепи). Структура фибриногена — Аα2Вβ2γ2. Вβ — и γ — цепи содержат сложные олигосахариды, связанные с остатками Asn . Концы молекул фибриногена обладают сильным отрицательным зарядом; это обусловлено присутствием большого количества остатков аспартата и глутамата в А-области цепи А α и в В-области области цепи Вβ (рис. 1). Помимо этого В-область цепи В β содержит необычно отрицательно заряженный остаток тирозин-О-сульфата . Отрицательно заряженные концы молекул фибриногена не только способствуют растворимости последних в воде, они отталкивают концы других молекул фибриногена, что предотвращает агрегацию последних.

Рис. 1. Схематическое изображение фибриногена, его структуры ( АαВβγ )2, заряженных концов, сайтов расщепления тромбином (стрелки) четырех пептидных связей Arg — Gly .

Тромбин — это сериновая протеаза с мол . м ассой 34000, состоящая из двух полипептидных цепей. Тромбин гидролизует четыре пептидные связи Arg — Gly в фибриногене (рис. 1). Из этих четырех связей две соединяют области А и α , а другие две — области В и β в цепях Аα и Вβ соответственно. Удаляемые из молекулы фибриногена фрагменты А и В являются отрицательно заряженными фибринопептидами , в результате образуется мономер фибрина, имеющий структуру ( αβγ )2. Длинные нерастворимые мономеры фибрина спонтанно ассоциируют в регулярные зигзагообразные структуры; в результате образуется нерастворимый полимерный фибриновый сгусток. Он захватывает эритроциты, тромбоциты и другие компоненты крови, в результате чего образуется красный тромб или белый тромб ( тромбоцитарная пробка). На ранней стадии фибриновый сгусток представляет собой весьма рыхлое образование, удерживающееся лишь нековалентносвязанной системой нерастворимых фибриновых мономеров.

Функция тромбина помимо превращения фибриногена в фибрин заключается в переводе фактора XIII в его активную форму ( XIII а ). Фактор Х III а ( трансглутаминаза ) «сшивает» мономеры фибрина путем образования специфической изопептидной связи между γ — карбоксамидной группой глутамина и ε -аминогруппой лизина (рис. 2). Такая стабилизация фибринового сгустка способствует его ретракции , что можно наблюдать в пробирке. Повышенная кровоточивость, наблюдаемая у пациентов с наследственной недостаточностью фактора XIII , объясняется невозможностью образования стабильного фибринового сгустка.

Рис. 2. Поперечная сшивка фибриновых молекул при действии активированного фактора XIII .

Рис. 3. Схематическое строение протромбина, N -конец — слева; область I содержит все остатки Gla . Показаны сайты расщепления фактором Х а и наименования продуктов расщепления. Локализация каталитически активного остатка серина обозначена ▲. А- и В-цепи активного тромбина ( заштрихованы ) удерживаются вместе дисульфидным мостиком.

Известно, что внезапный тромбоз сосудов может иметь опасные и даже катастрофические последствия. Вот почему активность тромбина должна в организме тщательно контролироваться. Такой контроль осуществляется двумя механизмами. Один из них опосредован функцией антагониста тромбина — антитромбина III (см. ниже). Второй механизм состоит в том, что в организме синтезируется и циркулирует каталитически неактивный зимоген тромбина — протромбин. Протромбин, или фактор II , синтезируется в печени и содержит остатки γ — карбоксиглутамата ( Gla ). Протромбин представляет собой одноцепочечный гликопротеин с мол массой 72000; рис. 3 знакомит нас с первичной и вторичной структурой этой молекулы. N -концевая область протромбина (1- на рисунке) содержит до 14 остатков Gla . Пунктирной линией обозначен дисульфидный мостик между областями А и В протромбина. Черным треугольником отмечена локализация каталитически активного остатка серина протеазного центра.

Активация протромбина происходит на тромбоцитах ; в этом процессе участвуют анионный тромбоцитарный фосфолипид , ионы Са 2 + , факторы Va и Xa .

Фосфолипиды, находящиеся на внутренней стороне плазматической мембраны тромбоцитов, экспонируются в результате индуцированного коллагеном разрушения и дегрануляции тромбоцитов. Эти фосфолипиды связывают ионы Са 2 + и протромбин (последний, по N -концевой области, содержащей остатки Gla ). Тромбоциты содержат также фактор V , который в активированной форме ( Va ) соединяется со специфическими рецепторами на мембране тромбоцитов (рис. 4). Фактор Va служит рецептором для фактора Х а, который в свою очередь связывает протромбин в области F -1-2 (рис. 3). Фактор Х а также является сериновой протеазой, он расщепляет каталитически неактивную молекулу протромбина в областях, указанных на рис. 3. При этом высвобождается N -концевая часть протромбина. В результате расщепления тромбина фактором Х а образуются полипептиды тромбина А и В, связанные дисульфидным мостиком.

Связывание фосфолипида через ионы Са 2 + с остатками Gla протромбина усиливает процесс активации последнего в 50—100 раз. Это происходит, по-видимому, вследствие создания высокой локальной концентрации протромбина и фактора Х а (рис. 4). Фактор Va вызывает усиление активации протромбина примерно в 350 раз также благодаря повышению локальной концентрации фактора X а.

Фактор Va , образуемый под действием тромбина из фактора V , впоследствии тем же тромбином и инактивируется, таким путем ограничивается процесс активации протромбина в тромбин.

Протромбин может быть активирован стафилокоагулазой в результате конформационных изменений.

Рис. 4. Схема связывания факторов Va , Xa , ионов Са 2 + и протромбина с плазматической мембраной тромбоцита.

Активация фактора Х

Внешний путь образования фактора Ха

Разрыв связи Arg — Ile , а следовательно и превращение фактора Х в фактор Х а, на внешнем пути осуществляют совместно фактор VII а и тканевый фактор. Фактор VII а функционирует только на внешнем пути, который быстро включается после повреждения ткани. Предшественник фактора VIIa — фактор VII (еще один Gla -содержащий гликопротеин) — синтезируется в печени и может активироваться тромбином или фактором Х а. Фактор VII — это зимоген, однако он обладает относительно высокой эндогенной активностью. Тканевый фактор, ускоряющий действие факторов VII или VIIa на фактор X , в большем количестве содержится в плаценте, легких и мозге.

В 1 мл плазмы содержится примерно 3 мг фибриногена и только 0,01 мг фактора X . Это означает, что в системе свертывания должна иметь место амплификация. И действительно, превращение фактора X в Х а — аутокаталитический процесс, который можно рассматривать как амплификацию. В рассмотренной группе реакций нелегко понять, что является первичным — «курица или яйцо»; в данном случае — фактор II а (тромбин) или фактор Х а (рис. 5).

Читайте также:  Застарелый вывих ключицы

Внутренний путь образования фактора Х а

Внутренний путь образования фактора Х а начинается с взаимодействия in vivo прекалликреина , высокомолекулярного кининогена , факторов XII и XI на активирующей поверхности, вероятно на коллагене (рис. 6). Активирующей поверхностью внутреннего пути в опытах in vitro служит стекло и каолин. Взаимодействие фактора XII с активирующей поверхностью делает его более доступным для протеолитической атаки калликреином . В результате действия калликреина образуется фактор Х II а, который в свою очередь индуцирует переход прекалликреина в калликреин . Таким образом, имеет место реципрокная активация. Фактор Х II а высвобождает из высокомолекулярного кининогена брадикинин и активирует фактор XI в Х I а. Фактор Х I а в результате двух последовательных реакций активирует фактор IX ( Gla -содержащий зимоген). Фактор I Ха в присутствии ионов Са 2 + и кислых фосфолипидов медленно активирует фактор X ; активация происходит путем расщепления той же связи Arg — Il е, которую расщепляет фактор VIIa на внешнем пути. Скорость активации фактора X фактором I Ха увеличивается в 500 раз в присутствии фактора VIII (или VIIIa ). Для активации фактора VIII , по-видимому, необходимо небольшое количество тромбина. Фактор VIII не является протеазой; вероятно, он служит рецептором для фактора IX а при расщеплении последним связи Arg — Il е в факторе X . Внутренний путь свертывания крови — медленный процесс, поскольку в нем участвует большое число факторов. Все вместе они образуют каскадный механизм, генерирующий фактор Х а (рис. 6).

Рис. 5. Взаимосвязь внутреннего, внешнего и конечного общего пути в процессе свертывания крови.

Рис. 6. Внутренний путь активации фактора X в Х а. ВМК — высокомолекулярный кининоген .

Имеется целый ряд наследственных болезней человека, обусловленных недостаточностью различных компонентов системы свертывания. Наиболее часто наблюдается недостаточность фактора VIII , детерминирующая гемофилию А (соответствующий ген локализован в 10-й хромосоме человека). Эта болезнь сыграла значительную роль в истории королевских династий в Европе.

У пациентов с аутосомно-доминантой болезнью Виллебранда помимо недостаточности фактора VIII имеется нарушение в адгезии тромбоцитов. Между тем у больных гемофилией А отсутствует только свертывающая активность фактора VIII , при этом адгезия тромбоцитов не нарушена. Фактор адгезии тромбоцитов (фактор Виллебранда) синтезируется клетками эндотелия сосудов и мегакариоцитами (клетками-предшественниками тромбоцитов); он представляет собой крупный гликопротеин с мол . м ассой более 200000. Фактор Виллебранда обнаруживается в плазме и тромбоцитах в составе комплекса с молекулой фактора VIII . По-видимому, на поверхности тромбоцитов имеется рецептор гликопротеиновой природы, связывающий комплекс фактора Виллебранда с фактором VIII . Фактор Виллебранда, вероятно, стабилизирует прокоагулянтную активность фактора VIII . Болезнь Виллебранда может быть результатом наследуемого дефекта в олигосахаридном фрагменте гликопротеинового фактора Виллебранда. Аномальный олигосахарид может препятствовать адгезии тромбоцитов и дестабилизировать фактор VIII . При гемофилии А имеется дефект фактора VIII ; при этом нарушается его свертывающая активность, в то же время адгезия тромбоцитов, определяемая фактором Виллебранда, не меняется. Фактор VIII представляет собой гликопротеин, содержащий 2300 аминокислот; его молекула обнаруживает частичную гомологию с церулоплазмином и фактором V . Синтезируется этот фактор в печени, селезенке и почках.

Нормальная плазма характеризуется несколькими видами антитромбиновой активности. Небольшой вклад в нее вносит α1-антитрипсин. На долю специфического α2-глобулина приходится около 25% всей антитромбиновой активности плазмы. Он образует необратимый комплекс с тромбином и другими протеазами, препятствуя таким образом связыванию этих ферментов с их природными субстратами. α2-Глобулин рассматривается как α2-ингибитор плазмина, поскольку он инактивирует также плазмин, являющийся сериновой протеазой с фибринолитической активностью.

Наибольшая антитромбиновая активность присуща антитромбину III . Антитромбин III обладает незначительной эндогенной активностью и сильно активируется в присутствии гепарина, обладающего большим отрицательным зарядом. Гепарин, по-видимому, связывается со специфическим катионным участком антитромбина III , вызывая конформационное изменение его молекулы. В результате этого изменения антитромбин III приобретает возможность связываться со всеми сериновыми протеазами, включая трипсин, химотрипсин и плазмин. В системе свертывания крови антитромбин III ингибирует активность тромбина, факторов I Ха, Ха, Х I а и Х II а. У индивидов с наследственной недостаточностью антитромбина наблюдается склонность к образованию тромбов. Отсюда можно сделать вывод, что антитромбин выполняет физиологические функции и что в норме процесс свертывания крови у человека представляет собой очень динамичную систему.

Гепарин часто используется в клинической практике в качестве препарата, предотвращающего свертывание крови. Главным фактором, определяющим противосвертывающую активность гепарина, является активация им антитромбина III , который в свою очередь ингибирует рассмотренные выше сериновые протеазы. Известно, что небольшое количество гепарина находится на стенках сосудов, вследствие этого снижается активация внутреннего пути. Противосвертывающую активность гепарина можно подавить сильно катионными полипептидами (например, протамином). Такие полипептиды конкурируют с катионными участками антитромбина III за связывание с полианионным гепарином.

Препараты группы кумарина ингибируют витамин-К-зависимое карбоксилирование остатков Glu , приводящее к образованию Gla в N -концевой части молекулы факторов II , VII , IX и X . Все эти факторы синтезируются в печени, и образование остатков Gla необходимо для их созревания и, следовательно, для нормального функционирования внутреннего, внешнего и общего конечного путей свертывания. По-видимому, препараты кумарина ингибируют восстановление хиноновых производных витамина К в активные гидрохиноновые формы. Введение витамина К снимает блок, вызываемый кумарином, и обеспечивает созревание в печени Gla -зависимых факторов свертывания. Обращение действия кумарина витамином К наблюдается только через 12—24 ч; обращение же противосвертывающей активности гепарина протамином происходит практически сразу; это различие обусловлено природой антагонистических механизмов.

Имеются убедительные данные, свидетельствующие о том, что система свертывания крови в норме находится в динамическом равновесии, при котором фибриновые сгустки постоянно образуются, а затем растворяются. Плазмин представляет собой сериновую протеазу, способную гидролизовать фибриноген и фибрин, факторы V и VIII , факторы комплемента и различные полипептидные гормоны. В норме плазмин содержится в плазме в форме неактивного профермента (плазминогена). В большинстве тканей организма имеются активаторы плазминогена различных типов. Тканевый активатор плазминогена — это сериновая протеаза, каталитически неактивная в отсутствие контакта с фибрином. Находясь в контакте с фибрином, активатор плазминогена способен расщеплять молекулу плазминогена с образованием плазмина. Когда плазмин гидролизует фибрин, активатор плазминогена теряет свою активность и протеолиз затухает. Таким образом, обеспечивается эффективная регуляция процесса фибринолиза. Весьма перспективным представляется использование в терапевтических целях тканевого активатора плазминогена (ТАП), получаемого методами генной инженерии. ТАП способствует восстановлению проходимости коронарных артерий, снижая, таким образом, повреждение миокарда, происходящее при остром тромбозе коронарных сосудов. Еще один активатор плазминогена — протеолитический фермент урокиназа — содержится в моче. Урокиназа — это тоже сериновая протеиназа; она может активировать плазминоген, расщепляя его в двух местах.

Плазминоген в норме осаждается с фибрином и, следовательно, входит в состав фибринового сгустка. Образующийся в результате активации плазмин расщепляет молекулы фибрина на растворимые фрагменты, и сгусток исчезает (растворяется). Фибриновые сгустки с поперечными сшивками, труднее растворяются плазмином.

Концентрация активаторов плазминогена повышается при ряде заболеваний, в том числе при некоторых формах рака и при шоке. Антиплазминовая активность, обусловленная α1-антитрипсином и α2-ингибитором плазмина, может снижаться при циррозе печени. Некоторые бактериальные продукты, например стрептокиназа, способны активировать плазминоген без расщепления его молекулы и могут быть ответственны за диффузные кровоизлияния, наблюдаемые иногда у больных с диссеминированными бактериальными инфекциями.

Конечная стадия каскада свертывания плаз­мы заключается в образовании из растворимого плазменного белка фибриногена нерастворимо­го фибрина под воздействием тромбина и ф.ХIII (рис. 42).

Рис. 42. Последовательные стадии образования нераст­воримого фибринаиз растворимого фибриногена

Тромбин

Тромбин — ключевой фермент гемостаза. Тромбин — витамин-К-зависимый белок — явля­ется сериновой протеазой. В печени происходит синтез неактивного предшественника протромби­на, который в дальнейшем циркулирует в плаз­ме. В комплексе ф.Ха-Va-II на фосфолипидной поверхности происходит ограниченный протео-лиз протромбина. Образуется несколько актив­ных структур с уменьшающейся молекулярной массой — мезотромбин, α-тромбин,βтромбин, γ-тромбин. Наиболее значимым продуктом яв­ляется сериновая протеаза — α-тромбин. На мо-

Читайте также:  Тромб нижних конечностей фото

лекуле тромбина имеется, по крайней мере, 4 сай­та связывания для субстратов, ингибиторов, ко­факторов и иона кальция. Это, а также способ­ность тромбина активно функционировать не только на твердой фазе, но и в токе крови позво­ляет ему выполнять многочисленные функции. Важнейшие функции тромбина в гемостазе:

• Ограниченный протеолиз фибриногена до
фибрин-мономеров (происходит в жидкой
фазе — кровотоке).

• Активация ф.V, -VIII, -VII, -XI.

• В комплексе с тромбомодулином тромбин
активирует протеин С.

• Ограниченный протеолиз плазматической
карбоксипептидазы В до активной формы —
активируемого тромбином ингибитора фиб­
ринолиза (TAFI).

• Стимуляция выброса из эндотелиоцитов тка­
невого активатора плазминогена.
Однако роль тромбина в организме не огра­
ничивается вышеперечисленными функциями.
Ключевая роль в процессе свертывания крови,
активация сосудистого эндотелия, клеточный
рост и процессы репарации, активация перифе­
рических клеток крови, активация фибриноли­
за — это наиболее изученные функции тромби­
на. Видимо, со временем этот список значитель­
но увеличится.

Плазменные белки гемостаза

Косвенным подтверждением важности тром­бина для организма может служить тот факт, что известны лишь единичные описания пациентов с гомозиготным дефектом молекулы тромбина, а пациенты с гипопротромбинемией встречаются чрезвычайно редко.

Важнейшим ингибитором тромбина являет­ся антитромбин III. Несколько меньшую роль играет кофактор гепарина П.

Фактор XIII — трансглютаминаза. В плазме большая часть неактивного ф.ХIII связана с фиб­риногеном. Активация ф.ХIII происходит путем ог­раниченного протеолиза неактивного ф.ХIII тром­бином одновременно с отщеплением пептида А от фибриногена. Как и большинство других фермен­тов, он выполняет несколько функций в гемостазе:

• Стабилизирует фибриновый сгусток путем
образования ковалентных связей между у-це-
пями мономеров фибрина.

• Участвует в связывании, α-ингибитора плаз-
мина с фибрином, что способствует предотв­
ращению преждевременного лизиса фибрино-
вого сгустка.

• Значительную роль ф.ХIII играет в процес­
сах полимеризации актина, миозина и других
компонентов цитоскелета тромбоцитов, что
чрезвычайно важно для активации тромбо­
цитов и ретракции образовавшегося фибри-
нового сгустка. Это объясняет наличие ф.ХIII
в цитоплазме тромбоцитов.

• Обнаружены перекрестные реакции ф.ХIII с
ф.V, фон Виллебранд протеином.
Помимо непосредственно реакций гемостаза,

ф.ХIII участвует в процессах образования соеди­нительной ткани, репаративных реакциях:

• Участвует в связывании молекул фибронек-
тина между собой и с молекулами фибрина.
Вероятно, это важно для направленной миг­
рации клеток и процессов репарации.

• Играет роль в биосинтезе коллагена, катали­
зируя образование связей между молекулами
коллагена типов I, II, III и V.

крови и образовывать прочную объемную струк­туру, которая эффективно закрывает поврежде­ние сосуда и предотвращает потерю крови. Кон­центрация фибриногена в крови здорового чело­века значительно выше, чем концентрация дру­гих белков гемостаза, что связано с его уникаль­ной ролью.

Синтез фибриногена происходит в печени и не зависит от витамина К. Некоторое количество фибриногена синтезируется в мегакариоцитах и содержится в тромбоцитах. Этот фибриноген не­сколько отличается от фибриногена, синтезиро­ванного в печени.

Помимо гепатоцитов и мегакариоцитов, ак­тивность гена γ-цепей фибриногена обнаружена в некоторых других тканях — головном мозге, лег­ких, костном мозге, где γ-цепи фибриногена, ви­димо, выступают в роли молекул адгезии.

Фибриноген — большой многокомпонентный белок, который состоит из трех пар полипептид­ных цепей — 2α, 2β, 2γ, связанных между собой дисульфидными мостиками и переплетенных друг относительно друга (рис. 43).

Пространственная структура молекулы фибриногена состоит из центрального Е-доме-на и 2 периферических D-доменов. α- и β-цепи формируют глобулярные структуры — фибрино-пептиды А и В (ФПА и ФПВ), которые закры­вают комплементарные участки в фибриногене и не позволяют этой молекуле полимеризовать-ся. Процесс взаимодействия фибриногена и тром­бина происходит в жидкой фазе — кровотоке. Тромбин соединяется с фибриногеном и отщеп­ляет конечные последовательности от α- и β-це-пей — 2 ФПА и 2 ФПВ (рис. 44). Образуются ра-

Формирование гемостатического тромба

Фибриноген — уникальная молекула, облада­ющая свойством быстро полимеризоваться в токе

Рис. 43. Фибриногенсостоит из 3 парных белковых мо­лекул α, β и γ, Фибринопептиды А и В (ФПА и ФПВ) отщеп­ляются тромбином от фибриногена, инициируя тем самым процесс полимеризации и превращение фибриногена в фибрин

Плазменные белки гемостаза

Рис. 44. Формирование фибрин-мономеровиз фибри­ногена. Тромбин отщепляет фибринопептиды ФПА и ФПВ от молекулы фибриногена, тем самым образуются раство­римые мономеры фибрина, которые способны полимери-зоваться до линейного полимера, или «растворимого фиб­рина»

створимые мономеры фибрина. В дальнейшем происходит спонтанное соединение комплимен­тарных участков фибрин-мономеров. Сначала образуются димеры, далее олигомеры и в ко­нечном итоге собираются мононити полимери-зованного фибрина. Таким образом, фибрино-вая цепь формируется спонтанной, конец в ко­нец полимеризацией фибрин-мономеров, при которой концевая часть одного мономера вза­имодействует с центральной частью другого мо­номера в месте отщепления ФПА. Результатом такой полимеризации является линейный поли­мер шириной в 2 молекулы (рис. 44). На этом этапе фибрин легко растворим в 5-молярной

мочевине, поэтому он получил название раство­римого фибрина.

Соединяясь с фибриногеном, тромбин не толь­ко отщепляет фибринопептиды. но и активирует связанный с ним фактор XIII. Фактор ХIIIа обра­зует ковалентные связи между γ-цепями (D-доме-нами) нитей растворимого фибрина (рис. 45), ко­торые соединяются за счет образования пептид­ных мостиков между боковыми радикалами ли­зина и глютамина. Сшитые между собой моно­нити фибрина образуют прочную сеть, менее под­верженную фибринолизу и более устойчивую к механическим воздействиям. В такой форме фиб­рин не растворяется в 5-молярной мочевине и на­зывается нерастворимым фибрином.

Рис. 46. Организованный тромб,в котором в фибрино-вую сеть включены клетки крови

Образовавшийся фибриновый сгусток — трех­мерная молекулярная сеть, в которую включены тромбоциты, эритроциты и лейкоциты (рис. 46). Активированные тромбоциты, связанные с нитями фибрина через рецепторы GPIIb-IIIa, сокращают-

Рис. 45. Образование нерастворимого фибринапод влиянием фактора ХIIIа

Плазменные белки гемостаза

ся под действием тромбостенина (тромбоцитарно-го актомиозина) вследствие присущих им контрак-тильных свойств (см. главу «Тромбоциты»). Про­исходит ретракция сгустка крови. Сгусток уплот­няется, из него выдавливается часть сыворотки. Формирование окончательного тромба наступает на 10-15-й минуте после полимеризации фибрина.

Если тромбоциты отсутствуют или имеют дефект GPIIb-IIIa, то ретракции кровяного сгуст­ка не происходит и он быстро лизируется в про­цессе фибринолиза. При отсутствии ретракции тромба в сосудистом русле возможен отрыв тром-ботических масс и эмболия удаленных сосудов (тромбоэмболия).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10083 — | 7750 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Тромбоз (от греч. thrombosis — свертывание) — прижизнен­ное свертывание крови в просвете сосуда или полостях сердца. Образующийся при этом сверток крови называют тромбом.

Хотя тромбоз представляет собой один из важнейших меха­низмов гемостаза, он может стать причиной нарушения крово­снабжения органов и тканей с развитием инфарктов, гангрены.

Патогенез.Патогенез тромбоза складывается из участия как местных, так и общих факторов.

К местным факторам относят изменения сосудистой стенки, замедление и нарушение тока крови.

Среди изменений сосудистой стенки особенно важно по­вреждение внутренней оболочки сосуда, чаще всего обусловлен­ное атеросклеретическими и воспалительными поражениями ее. К повреждению стенки сосуда ведут и ангионевротические рас­стройства — спазмы артерий и артериол. Повреждение эндокар­да при эндокардитах, инфарктах миокарда также сопровождает­ся тромбообразованием.

Замедление и нарушение (завихрение) тока крови в артериях обычно возникают вблизи атеросклеротических бляшек, в поло­сти аневризмы, при спазме; в венах — при варикозном расшире­нии. Роль нарушений тока крови в развитии тромбоза подтвер­ждается наиболее частой их локализацией на месте ветвления со­судов. О значении замедления тока крови для тромбообразования свидетельствует частое возникновение тромбов в венах при развитии сердечно-сосудистой недостаточности, при сдавлении вен опухолями, беременной маткой, иммобилизации конечности.

К общим факторам патогенеза тромбоза относят на­рушение регуляции свертывающей и противосвертывающей сис­тем крови и изменение состава крови. Главная роль принадлежит нарушениям баланса между свертывающей и противосвертывающей системами в регуляции жидкого состояния крови в сосу­дистом русле. Состояния повышенной свертываемости (гиперкоагуляция) часто являются следствием обширных хирургиче­ских операций и травм, беременности и родов, некоторых лейко­зов, сопровождающихся тромбоцитозом (истинной полицитемин и других миелопролиферативных заболеваний), спленэктомии, эндотоксемии, шока, реакций гиперчувствительности, злокачест­венных опухолей.

Читайте также:  Куперозная кожа уход

Среди изменений состава (качества) крови наибольшее значе­ние имеет повышение вязкости. Оно может быть обусловленс эритроцитозом или полицитемией, возникающими при дегидра­тации (чаще у детей), при хронических гипоксических состояниях (дыхательной недостаточности, цианотических врожденных пороках сердца), истинной полицитемии, увеличении содержания грубодисперсных фракций белков (например, при миеломной бо­лезни).

С практической точки зрения важно выделить группы боль­ных со склонностью к образованию тромбов. К ним можно от­нести:

▲ больных, находящихся на длительном постельном режиме по­сле операции;

▲ страдающих хронической сердечно-сосудистой недостаточно­стью (хроническим венозным полнокровием);

▲ больных с атеросклерозом;

▲ больных с врожденными или приобретенными состояниями гиперкоагуляции, предрасполагающими к рецидивирующему тромбозу.

Механизм образования тромба.Инициальным моментом тромбообразования является повреждение эндотелия. Тромб об­разуется при взаимодействии тромбоцитов (кровяных пласти­нок), поврежденного эндотелия и системы свертывания крови (коагуляционного каскада).

Тромбоциты. Основная их функция — поддержание це­лости сосудистой стенки — направлена на прекращение или пре­дотвращение кровотечения и является важнейшим звеном гемо­стаза. Тромбоциты осуществляют следующие функции:

▲ участвуют в репарации эндотелия посредством выработки PDGF (тромбоцитарный фактор роста);

▲ формируют тромбоцитарную бляшку на месте повреждения сосуда в течение нескольких минут — первичный гемостаз;

▲ участвуют в коагуляционном каскаде (вторичный гемостаз) путем активации фактора 3 тромбоцитов, что в конечном счете приводит к тромбообразованию.

Эндотелий. Для сохранения крови в своем обычном со­стоянии необходима целостность (структурная и функциональ­ная) сосудистого эндотелия. Интактная эндотелиальная клетка модулирует некоторые звенья гемостаза и обеспечивает тромборезистентность, т.е. противостоит тромбообразованию в резуль­тате следующих процессов:

▲ продукция гепарансульфата — протеогликана, активирующе­го антитромбин III, который нейтрализует тромбин и другие факторы свертывания, включая IXa, Xa, XIa и ХПа;

▲ секреция естественных антикоагулянтов, таких как тканевый активатор плазминогена;

▲ инактивация и резорбция тромбина;

▲ синтез тромбомодулина — поверхностноклеточного протеи­на, связывающего тромбин и превращающего его в активатор протеина С — витамин К-зависимый плазменный протеин, кото­рый ингибирует коагуляцию, лизируя факторы Va и VI—Иа;

▲ синтез протеина S — кофактора активированного протеина С;

▲ продукция PGI-2 — простациклина, обладающего антитромбогенным эффектом;

▲ синтез оксида азота (II) (NO), который действует аналогично PGI-2.

Понимание этих антитромбогенных механизмов, осуществля­емых эндотелиальной клеткой на ее поверхности, позволяет по­нять значение дисфункции эндотелия как триггера тромбообра­зования.

Существуют также следующие факты, доказывающие про-тромбогенную функцию эндотелия:

• эндотелий синтезирует фактор Виллебранда, который спо­собствует агрегации тромбоцитов и фактора V;

• эндотелий способен связывать факторы IX и X, что может вызвать коагуляцию на поверхности эндотелия;

• под воздействием интерлейкина-1 и фактора некроза опухоли (ФНО) эндотелий выбрасывает в плазму тромбопластин — по­тенциальный инициатор свертывания крови по внешней системе (внешнему пути).

Активация системы свертывания крови. Это решающий этап в прогрессировании и стабилизации тромба. Процесс завершается образованием фибрина — вторичный ге­мостаз. Это многоэтапный каскадный ферментативный про­цесс — коагуляционный каскад, требующий довольно много вре­мени; при этом последовательно активируются проферменты. В процессе свертывания прокоагулянты — тромбопластины, пре­вращаются в активные ферменты — тромбины, способствующие образованию из циркулирующего в крови растворимого фибри­ногена нерастворимого фибрина. Образующиеся нити фибрина скрепляют агрегаты тромбоцитов, образовавшиеся при первич­ном гемостазе. Это имеет большое значение для предотвращения вторичного кровотечения из крупных сосудов, наступающего че­рез несколько часов или дней после травмы.

Механизм тромбообразования (тромбогенез) представлен следующими звеньями (рис. 4).

1. Адгезия тромбоцитов к обнаженному коллагену в месте по­вреждения эндотелиальной выстилки осуществляется с помощью фибронектина на поверхности тромбоцитов и стимулируется в большей степени коллагеном типа III, чем коллагеном базальной мембраны (IV тип). Медиатором является фактор Виллебранда, вырабатываемый эндотелием.

2. Секреция тромбоцитами АДФ и тромбоксана-А2 (ТХ-А2). вызывающего вазоконстрикцию и агрегацию тромбоцитов (бло­кирование образования Тх-А2 небольшими дозами аспирина лежит в основе превентивной терапии тромбообразования), гистамина, серотонина, PDGF и др.

3. Агрегация тромбоцитов — образование первичной тромбоцитарной бляшки.

4. Активация процесса свертывания крови, или коагуляционного каскада (схема 11), с помощью следующих механизмов:

▲ внутренней системы свертывания, которая запускается кон­тактной активацией фактора XII (Хагемана) коллагеном, факто­ра XI, прекалликреина, высокомолекулярного кининогена и уси­ливается фосфолипидом тромбоцитов (фактор 3), высвобождаю­щимся при конформационных изменениях их мембраны;

▲ внешней системы свертывания, которая запускается ткане­вым тромбопластином, высвобождающимся из поврежденного эндотелия (тканей), и активирует фактор VII. В конечном итоге оба пути приводят к превращению протромбина (фактор II) в тромбин (фактор Па), который способствует превращению фиб­риногена в фибрин, а также вызывает дальнейшее выделение АДФ и Тх-А2 из тромбоцитов, способствуя их агрегации.

5. Агрегация стабилизируется образующимися отложениями фибрина — стабилизация первичной бляшки. В дальнейшем фибриновый сверток захватывает лейкоциты, агглютинирующиеся эритроциты и преципитирующие белки плазмы крови.

Таким образом, можно выделить следующие стадии мор­фогенеза тромба: ▲агглютинация тромбоцитов; ▲ коагуяция фибриногена с образованием фибрина; ▲ агглютинация эритроцитов; ▲ преципитация плазменных белков.

Рис. 4. Механизм образования тромба (схема). Объяснение в тексте.

Система свертывания работает в тесной связи с фибринолитической системой, которая модулирует коагуляцию и препятствует тромбообразованию. Механизм Действия фибринолитической истемы складывается из следующих стадий:

▲ превращение проэнзима плазминогена в плазмин — наиболее важный фибринолитический фермент; ▲ растворение фибрина с помощью плазмина; ▲ взаимодействие фибринолитической сис­темы с системой свертывания на уровне активации фактора XII в ХIIа связывает систему свертывания, систему комплемента и кининовую систему.

Морфология тромба.Тромб обычно прикреплен к стенке со­суда в месте ее повреждения, где начался процесс тромбообразования. Он может быть пристеночным (т.е. закрывать только часть просвета) или обтурирующим. Поверхность тромба шеро­ховатая. Пристеночные тромбы в крупных артериях могут иметь гофрированную поверхность, что отражает ритмичное выпаде­ние склеивающихся тромбоцитов и выпадение фибрина при про­должающемся кровотоке. Тромб, как правило, плотной конси­стенции, сухой.

В зависимости от строения и внешнего вида, что определяет­ся особенностями и темпами тромбообразования, различают бе­лый, красный, смешанный (слоистый) и гиалиновый тромбы.

Белый тромб состоит преимущественно из тромбоци­тов, фибрина и лейкоцитов, образуется медленно при быстром токе крови (чаще в артериях). Красный тромб, помимо тромбоцитов и фибрина, содержит большое число эритроцитов, образуется быстро при медленном токе крови (обычно в венах). В наиболее часто встречающемся смешанном тромбе, который имеет слоистое строение (слоистый тромб) и пестрый вид, содержатся элементы как белого, так и красного тромба. В смешанном тромбе различают головку (имеет строение белого тромба), тело (собственно смешанный тромб) и хвост (имеет строение красного тромба). Головка прикреплена к эндотелиальной выстилке сосуда, что отличает тромб от посмертного сгуст­ка крови. Слоистые тромбы чаще образуются в венах, в полости аневризмы аорты и сердца. Гиалиновый тромб — осо­бый вид тромбов, образующихся в сосудах микроциркуляторного русла; он редко содержит фибрин, состоит из разрушенных эрит­роцитов, тромбоцитов и преципитирующих белков плазмы, напо­минающих гиалин. Увеличение тромба происходит путем насло­ения тромботических масс на первичный тромб, причем рост тромба может происходить как по току крови, так и против тока. Исход тромбоза.Может быть различен. К благоприятным исходам относят асептический аутолиз тромба, воз­никающий под влиянием протеолитических ферментов и прежде всего плазмина. Установлено, что большинство мелких тромбов рассасывается в самом начале их образования. Другим благопри­ятным исходом является организация тромба, т.е. замещение его соединительной тканью, которая может сопровождаться процес­сами канализации и васкуляризации (восстановление проходимо­сти сосуда). Возможно обызвествление тромба, в венах при этом возникают камни — флеболиты.

К неблагоприятным исходам относят отрыв тромба с развитием тромбоэмболии и септическое расплавле ние тромба, которое возникает при попадании в тромботические массы гноеродных бактерий, что приводит к тромбобактериальной эмболии сосудов различных органов и тканей (при сепсисе).

Значение тромбоза.Определяется быстротой его развития локализацией и распространенностью. Обтурирующие тромбы в артериях — явление опасное, так как приводят к развитию ин фарктов и гангрены.

Дата добавления: 2015-08-14 ; просмотров: 942 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ссылка на основную публикацию
Обильное кровотечение со сгустками
Человеку в течение всей жизни свойственно сталкиваться с различными заболеваниями. Стоит отметить, что болезням, связанным с мочеполовой системой, больше подвержены...
Неприятные ощущения в области яичек
Мужские семенники – крайне чувствительный и уязвимый орган, подверженный травмам, инфекционным атакам, а также сосудистым патологиям и опухолевым образованиям. В...
Непрерывные соединения позвоночного столба
В позвоночном столбе имеются все виды соединений - как прерывные, так и непрерывные. Различают следующие соединения: 1) между телами, 2)...
Обильные белые выделения во время секса
Многие женщины, когда замечают, что у них проявляются из влагалища белые выделения во время секса, обращаются за медицинской помощью. Как...
Adblock detector