Что такое лазерная

Что такое лазерная

Сложно в наше время найти человека, который никогда не слышал бы слова «лазер», однако чётко представляют, что это такое, весьма немногие.

За полвека с момента изобретения лазеры разных видов нашли применение в широком спектре направлений, от медицины до цифровой техники. Так что же такое лазер, каков принцип его действия, и для чего он нужен?

Что такое лазер?

Возможность существования лазеров была предсказана Альбертом Эйнштейном, который ещё в 1917 году опубликовал работу, говорящую о возможности излучения электронами квантов света определённой длины. Это явление было названо вынужденным излучением, но долгое время оно считалось нереализуемым с технической точки зрения.

Однако с развитием технических и технологических возможностей создание лазера стало делом времени. В 1954 году советские учёные Н. Басов и А. Прохоров получили Нобелевскую премию за создание мазера – первого микроволнового генератора, работающего на аммиаке. А в 1960 году американец Т. Мейман изготовил первый квантовый генератор оптических лучей, названный им лазером (Light Amplification by Stimulated Emission of Radiation). Устройство преобразовывает энергию в оптическое излучение узкой направленности, т.е. световой луч, поток квантов света (фотонов) высокой концентрации.

Принцип функционирования лазера

Явление, на котором основана работа лазера, называется вынужденным, или индуцированным, излучением среды. Атомы определённого вещества могут испускать фотоны под действием других фотонов, при этом энергия воздействующего фотона должна быть равной разности между энергетическими уровнями атома до излучения и после него.

Излучённый фотон является когерентным тому, который вызвал излучение, т.е. в точности подобен первому фотону. В результате слабый поток света в среде усиливается, причём не хаотично, а в одном заданном направлении. Образуется луч вынужденного излучения, которое и получило название лазера.

Классификация лазеров

По мере исследования природы и свойств лазеров были открыты различные виды этих лучей. По виду состояния исходного вещества лазеры могут быть:

  • газовыми;
  • жидкостными;
  • твердотельными;
  • на свободных электронах.


В настоящее время разработано несколько способов получения лазерного луча:

  • при помощи электрического тлеющего либо дугового разряда в газовой среде – газоразрядные;
  • при помощи расширения горячего газа и создания инверсий населённости – газодинамические;
  • при помощи пропускания тока через полупроводник с возбуждением среды – диодные или инжекционные;
  • путём оптической накачки среды лампой-вспышкой, светодиодом, другим лазером и т. д.;
  • путём электронно-лучевой накачки среды;
  • ядерной накачкой при поступлении излучения из ядерного реактора;
  • при помощи особых химических реакций – химические лазеры.

Все они обладают своими особенностями и отличиями, благодаря которым находят применение в различных сферах промышленности.

Практическое использование лазеров

На сегодняшний день лазеры разных типов применяются в десятках отраслей промышленности, медицины, IT технологий и других сферах деятельности. С их помощью осуществляются:

  • резка и сварка металлов, пластмасс, других материалов;
  • нанесение изображений, надписей и маркировка поверхности изделий;
  • сверление сверхтонких отверстий, прецизионная обработка полупроводниковых кристаллических деталей;
  • формирование покрытий изделий напылением, наплавкой, поверхностным легированием и т.д.;
  • передача информационных пакетов при помощи стекловолокна;
  • выполнение хирургических операций и других лечебных воздействий;
  • косметологические процедуры омоложения кожи, удаления дефектных образований и др.;
  • наведение на цель различных видов вооружений, от стрелкового до ракетного оружия;
  • создание и использование голографических методов;
  • применение в различных научно-исследовательских работах;
  • измерение расстояний, координат, плотности рабочих сред, скорости потоков и многих других параметров;
  • запуск химических реакций для проведения различных технологических процессов.
Читайте также:  Перелом позвоночника грудной отдел


Существует ещё немало направлений, в которых лазеры уже используются или найдут применение в самое ближайшее время.

Что такое лазер? И зачем он нужен?

Лазер – одно из наиболее ярких и полезных изобретений XX века, открывшее перед человечеством огромное количество новых направлений деятельности.

Сегодня лазеры получили такое широкое распространение в нашей жизни, что тяжело представить, что с момента их изобретения прошло всего 50 лет!

А если быть точнее, то первый лазер был создан 16 мая 1960 года физиком из Калифорнии Теодором Мейнманом (Theodore H. Maiman). Этот лазер работал на кристалле рубина с резонатором Фабри-Перо, а в качестве источника накачки использовалась лампа-вспышка. Лазер работал в импульсном режиме на длине волны 694,3 нм.

В основу этого изобретения легла теория вынужденного излучения, выдвинутая Эйнштейном в 1917 г. Согласно теории, кроме процессов спонтанного поглощения и излучения света существует возможность вынужденного (или стимулированного) излучения, когда можно «заставить» электроны излучить свет определенной длины волны одновременно.

Так что же такое лазер?

Ла́зер (от англ. LASER — Light Amplification by Stimulated Emission of Radiation, что в переводе на русский означает «усиление света посредством вынужденного излучения»), или опти́ческий ква́нтовый генера́тор — это устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

То есть, это луч света, испускаемый синхронными источниками, в узком направленном диапазоне. Такой чрезвычайно сконцентрированный световой поток.

Как работает лазер?

Принцип работы лазера основан на явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Читайте также:  Мазь при переломах и ушибах

Типы лазеров:

Лазеры могут определяться на основе множества признаков, но чаще всего используется классификация

по принципу агрегатного состояния лазерного вещества:

  1. Газовые;
  2. Жидкостные;
  3. Лазеры на свободных электронах;
  4. Твердотельные.

По способу возбуждения лазерного вещества:

  1. Газоразрядные лазеры (в тлеющих, дуговых разрядах, в разрядах на полых электродах);
  2. Газодинамические лазеры (с созданием инверсий населенностей путем расширения горячих газов)
  3. Инжекционные, или диодные лазеры (с возбуждением за счет прохождения тока в полупроводнике);
  4. Лазеры с оптической накачкой (возбуждение с помощью лампы-вспышки, лампы непрерывного горения, другого лазера, светодиода);
  5. Лазеры с электронно-лучевой накачкой (специальные типы газовых и полупроводниковых лазеров)
  6. Лазеры с ядерной накачкой (с возбуждением посредством излучения из атомного реактора или в результате ядерного взрыва);
  7. Разные лазерные системы обладают разными уникальными свойствами и находят свое особенное применение.
  8. Химические лазеры (с возбуждением на основе химических реакций).

Применение лазеров.

С момента своего изобретения лазеры зарекомендовали себя как «готовые решения ещё неизвестных проблем». В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту.

  1. Передача информации по стекловолокнам
  2. Лазерная обработка материалов:
    • маркировка и художественная гравировка
    • резка
    • сварка
    • В микроэлектронике для прецизионной обработки материалов (резка полупроводниковых кристаллов, сверление особо тонких отверстий в печатных платах).
    • для получения поверхностных покрытий материалов (лазерное легирование, лазерная наплавка, вакуумно-лазерное напыление) с целью повышения их износостойкости.
    • Лазеры в медицине и биофотонике
      • лазерная хирургия
      • биофотоника и медицинская диагностика
      • офтольмология (лечение катаракта, отслоение сетчатки, лазерная коррекция зрения и др.).
      • Косметологии (лазерная эпиляция, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление татуировок и пигментных пятен).
      • Термоядерная реакция с применением лазеров
      • В военных целях:
        • как средство наведения и прицеливания.
        • ракетное оружие на основе лазерного излучения
        • Астрономия:
          • Лидар: уточнил значения ряда фундаментальных астрономических постоянных и параметры космической навигации, расширил представления о строении атмосферы и поверхности планет Солнечной системы.
          • В астрономических телескопах, с адаптивной оптической системой коррекции атмосферных искажений, лазер применяют для создания искусственных опорных звезд в верхних слоях атмосферы.
          • Использование лазеров в области научных исследований
          • Голография и интерферометрия
          • Метрология и измерительная техника. Измерение: расстояния (лазерные дальномеры), времени, давления, температуры, скорости потоков жидкостей и газов, угловой скорости (лазерный гироскоп), концентрации веществ, оптической плотности, разнообразных оптических параметров и характеристик, в виброметрии и др.
          • Лазерная химия. Для запуска и анализа химических реакций Лазерное излучение позволяет обеспечить точную локализацию, дозированность, абсолютную стерильность и высокую скорость ввода энергии в систему.
          • Лазеры в приборах и оборудовании
            • Устройства считывания штриховых кодов
            • В лазерной мыши и лазерной клавиатуре
            • Audio-CD, CD-ROM, DVD, Blu-ray disc
            • Лазерные принтеры
            • Лазерные пико-проекторы
            Читайте также:  Реабилитация после перелома бедра

            Last update Вс, 29 Янв 2017 11pm

            Что такое лазер?

            • " onclick="window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,w > Печать
            • E-mail

            Дата Категория: Физика

            Лазер — это устройство, создающее узкий пучок интенсивного света. В работе лазера используется свойство электронов атома занимать только определенные орбиты вокруг своего ядра. Когда атом получает квант энергии, он может перейти в возбужденное состояние, которое характеризуется перемещением электронов с самой низкой энергетической орбиты (так называемый основной уровень) на орбиту с более высоким энергетическим уровнем.

            Однако электроны не могут долго оставаться на орбите с высокой энергией и самопроизвольно возвращаются на основной уровень, при этом каждый такой электрон испускает фотон (световую волну). Процесс, начавшийся в одном атоме, запускает цепную реакцию перехода электронов других атомов на более низкие энергетические орбиты, в результате чего образуется лавина одинаковых световых волн, согласованно изменяющихся во времени. Эти волны формируют световой луч, который у некоторых лазеров имеет столь высокую мощность, что может резать камни и металлы. Изобретенные в 1960 году, лазеры имеют сейчас очень широкую сферу применения, начиная от медицины (для удаления опухолей) и заканчивая музыкой (для записи и считывания сигналов на компакт-дисках).

            Твердотельный лазер

            Типичный лазер состоит из трубки с твердым кристаллом, например, рубином (рисунок сверху), закрытой с торцов непрозрачным и частично прозрачным зеркалами. Электрическая обмотка возбуждает атомы кристалла для генерации световых волн, которые перемещаются между зеркалами до тех пор, пока не станут достаточно интенсивными, чтобы пройти через частично прозрачное зеркало.

            Создание лазерного луча

            2. Сразу же после включения лазера энергия из разрядной трубки переводит электроны на более высокие энергетические орбиты <внешние окружности).

            3. Когда электроны начинают возвращаться на основной уровень, они испускают свет, побуждая другие электроны делать то же самое. Результирующий световой пучок имеет одну длину волны и, по мере возвращения новых электронов на низкие орбиты, становится все более мощным.

            Более резкий фокус

            1. Лазерное излучение (один цвет) 2. Естественный свет (много цветов)

            Лазерный пучок содержит свет только одной длины волны и может быть сфокусирован линзой практически в точку (рисунок справа). Естественный свет, состоящий из лучей с различными длинами волн, так резко не фокусируется (дальний рисунок справа). Способность концентрировать огромную энергию в узком луче и передавать этот луч на большие расстояния практически без рассеяния и ослабления, характерных для многоцветного света, делает лазер важнейшим инструментом в руках человека.

            Ссылка на основную публикацию
            Adblock detector